
Package: quadprog (via r-universe)
August 27, 2024

Type Package

Title Functions to Solve Quadratic Programming Problems

Version 1.5-8

Date 2019-11-20

Author S original by Berwin A. Turlach <Berwin.Turlach@gmail.com> R
port by Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at>
Fortran contributions from Cleve Moler (dposl/LINPACK and (a
modified version of) dpodi/LINPACK)

Maintainer Berwin A. Turlach <Berwin.Turlach@gmail.com>

Description This package contains routines and documentation for
solving quadratic programming problems.

Depends R (>= 3.1.0)

License GPL (>= 2)

NeedsCompilation yes

Date/Publication 2019-11-20 08:20:02 UTC

Repository https://berwinturlach.r-universe.dev

RemoteUrl https://github.com/cran/quadprog

RemoteRef HEAD

RemoteSha 6a2fdd0144aa84ecaf0fb120aa2722899403abf9

Contents

solve.QP . 2
solve.QP.compact . 3

Index 5

1

2 solve.QP

solve.QP Solve a Quadratic Programming Problem

Description

This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic
programming problems of the form min(−dT b+ 1/2bTDb) with the constraints AT b >= b0.

Usage

solve.QP(Dmat, dvec, Amat, bvec, meq=0, factorized=FALSE)

Arguments

Dmat matrix appearing in the quadratic function to be minimized.

dvec vector appearing in the quadratic function to be minimized.

Amat matrix defining the constraints under which we want to minimize the quadratic
function.

bvec vector holding the values of b0 (defaults to zero).

meq the first meq constraints are treated as equality constraints, all further as inequal-
ity constraints (defaults to 0).

factorized logical flag: if TRUE, then we are passing R−1 (where D = RTR) instead of the
matrix D in the argument Dmat.

Value

a list with the following components:

solution vector containing the solution of the quadratic programming problem.

value scalar, the value of the quadratic function at the solution
unconstrained.solution

vector containing the unconstrained minimizer of the quadratic function.

iterations vector of length 2, the first component contains the number of iterations the
algorithm needed, the second indicates how often constraints became inactive
after becoming active first.

Lagrangian vector with the Lagragian at the solution.

iact vector with the indices of the active constraints at the solution.

References

D. Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex
Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages
226–239.

D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27, 1–33.

solve.QP.compact 3

See Also

solve.QP.compact

Examples

##
Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
under the constraints: A^T b >= b0
with b0 = (-8,2,0)^T
and (-4 2 0)
A = (-3 1 -2)
(0 0 1)
we can use solve.QP as follows:
##
Dmat <- matrix(0,3,3)
diag(Dmat) <- 1
dvec <- c(0,5,0)
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)
solve.QP(Dmat,dvec,Amat,bvec=bvec)

solve.QP.compact Solve a Quadratic Programming Problem

Description

This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic
programming problems of the form min(−dT b+ 1/2bTDb) with the constraints AT b >= b0.

Usage

solve.QP.compact(Dmat, dvec, Amat, Aind, bvec, meq=0, factorized=FALSE)

Arguments

Dmat matrix appearing in the quadratic function to be minimized.

dvec vector appearing in the quadratic function to be minimized.

Amat matrix containing the non-zero elements of the matrix A that defines the con-
straints. If mi denotes the number of non-zero elements in the i-th column of A
then the first mi entries of the i-th column of Amat hold these non-zero elements.
(If maxmi denotes the maximum of all mi, then each column of Amat may have
arbitrary elements from row mi + 1 to row maxmi in the i-th column.)

Aind matrix of integers. The first element of each column gives the number of non-
zero elements in the corresponding column of the matrix A. The following
entries in each column contain the indexes of the rows in which these non-zero
elements are.

bvec vector holding the values of b0 (defaults to zero).

4 solve.QP.compact

meq the first meq constraints are treated as equality constraints, all further as inequal-
ity constraints (defaults to 0).

factorized logical flag: if TRUE, then we are passing R−1 (where D = RTR) instead of the
matrix D in the argument Dmat.

Value

a list with the following components:

solution vector containing the solution of the quadratic programming problem.

value scalar, the value of the quadratic function at the solution
unconstrained.solution

vector containing the unconstrained minimizer of the quadratic function.

iterations vector of length 2, the first component contains the number of iterations the
algorithm needed, the second indicates how often constraints became inactive
after becoming active first.

Lagrangian vector with the Lagragian at the solution.

iact vector with the indices of the active constraints at the solution.

References

D. Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex
Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages
226–239.

D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex
quadratic programs. Mathematical Programming, 27, 1–33.

See Also

solve.QP

Examples

##
Assume we want to minimize: -(0 5 0) %*% b + 1/2 b^T b
under the constraints: A^T b >= b0
with b0 = (-8,2,0)^T
and (-4 2 0)
A = (-3 1 -2)
(0 0 1)
we can use solve.QP.compact as follows:
##
Dmat <- matrix(0,3,3)
diag(Dmat) <- 1
dvec <- c(0,5,0)
Aind <- rbind(c(2,2,2),c(1,1,2),c(2,2,3))
Amat <- rbind(c(-4,2,-2),c(-3,1,1))
bvec <- c(-8,2,0)
solve.QP.compact(Dmat,dvec,Amat,Aind,bvec=bvec)

Index

∗ optimize
solve.QP, 2
solve.QP.compact, 3

solve.QP, 2, 4
solve.QP.compact, 3, 3

5

	solve.QP
	solve.QP.compact
	Index

